Mass Spectrometry Databases
Introduction
Library based MS approaches for microbial identification require labeled sets of microbial mass spectra. Starting with version 0.82, MicrobeMS can work with experimental MALDI-ToF or LC-MS¹ mass spectra and their corresponding MS databases.
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectra of highly pathogenic (biosafety level 3, BSL-3) bacteria such as Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Burkholderia pseudomallei, Brucella melitensis and Francisella tularensis as well as a selection of MALDI-TOF mass spectra of their close and distant relatives. The RKI mass spectral databases can be used as a reference for the diagnosis of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in their native data format (Bruker Daltonics). The MALDI-TOF MS databases are updated on a regular basis.
The LC-MS¹ database is an in silico database compiled from Uni-Prot Knowledgebase resources (Uni-Prot/KB Swissprot and TrEMBL), for details see below).
MALDI-ToF MS databases
The different versions of RKI biosafety level 3 (BSL-3) MALDI-ToF MS database can be downloaded from the following locations:
1. ZENODO database version 4.1 (20230306): Lasch P, Stämmler M & Schneider A, (2023). Version 4.1 (20230306) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). Zenodo. https://doi.org/10.5281/zenodo.7990990 Version Mar 06, 2023, creative commons CC BY-NC-SA 4.0 license
2. ZENODO database version 3 (20181130): Lasch P, Stämmler M & Schneider A, (2018). Version 3 (20181130) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). Zenodo. https://doi.org/10.5281/zenodo.1880975 Version Nov 30, 2018, creative commons CC BY-NC-SA 4.0 license
3. ZENODO database version 2 (20170523): Lasch P, Stämmler M & Schneider , (2017). Version 2 (20170523) of the MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). Zenodo. http://doi.org/10.5281/zenodo.582602 Version May 23, 2017, creative commons CC BY-NC-SA 4.0 license
4. ZENODO database version 1 (20161027): Lasch P, Stämmler M & Schneider A, (2016). A MALDI-ToF Mass Spectrometry Database for Identification and Classification of Highly Pathogenic from the Robert Koch-Institute (RKI). Zenodo. http://doi.org/10.5281/zenodo.163517 Version October 27, 2016, creative commons CC BY-NC-SA 4.0 license
LC-MS¹ databases
The original concept of microbial identification by means of MALDI-ToF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS¹ microbial identification, for details see
Preprint: Lasch P, Schneider A, Blumenscheit C and Doellinger J. Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹) and in silico Peptide Mass Data, bioRxiv (Dec 10, 2018), doi:10.1101/870089.
Peer reviewed paper: Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger. Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹) and in silico Peptide Mass Libraries. Mol Cell Proteomics, 2020. 19(12): p. 2125-2139. doi:10.1074/mcp.TIR120.002061
Supplementary data - LC-MS¹ database and program code: Lasch P, Schneider A, Blumenscheit C, Doellinger J. In silico Database for Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹). ZENODO. doi: 10.5281/zenodo.3573996 Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license
Tutorial: Identification analysis by means of LC-MS¹ and in silico databases