Mass Spectrometry Databases: Difference between revisions

From MicrobeMS Wiki
Jump to navigation Jump to search
Line 45: Line 45:
== LC-MS¹ databases ==
== LC-MS¹ databases ==


The original concept of microbial identification by means of MALDI-TOF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS&sup1; microbial identification, see this '''preprint''': Lasch P, Schneider A, Blumenscheit C and Doellinger J, [https://doi.org/10.1101/870089 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Data]'', bioRxiv (Dec 10, '''2018'''), doi:10.1101/870089.<br>
The original concept of microbial identification by means of MALDI-TOF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS&sup1; microbial identification, for details see<br>
    '''Preprint:''' Lasch P, Schneider A, Blumenscheit C and Doellinger J.
    [https://doi.org/10.1101/870089 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;) and in silico Peptide Mass Data''],
    ''bioRxiv'' (Dec 10, '''2018'''), doi:10.1101/870089.


  1. Lasch P, Schneider A, Blumenscheit C, Doellinger J. (2019). In silico Database for
    '''Peer reviewed paper''': Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger.
    Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;).  
    [https://www.ncbi.nlm.nih.gov/pubmed/32998977 ''Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS(1)) and in Silico Peptide Mass Libraries''].
    Zenodo. [https://doi.org/10.5281/zenodo.3573996 https://doi.org/10.5281/zenodo.3573996]
    ''Mol Cell Proteomics'', '''2020'''. 19(12): p. 2125-2139.
    Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license


Details can be found here: [[Identification Analysis by Means of LC-MS&sup1; and ''in silico'' Databases|Identification analysis by means of LC-MS&sup1; and ''in silico'' databases]]
    '''Supplementary data - LC-MS&sup1; database and program code''': Lasch P, Schneider A, Blumenscheit C, Doellinger J.
    In silico Database for Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS&sup1;).
    (ZENODO). [https://doi.org/10.5281/zenodo.3573996 https://doi.org/10.5281/zenodo.3573996]
    Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license
 
    '''Tutorial''': [[Identification Analysis by Means of LC-MS&sup1; and ''in silico'' Databases|Identification analysis by means of LC-MS&sup1; and ''in silico'' databases]]

Revision as of 10:22, 16 December 2024


Introduction

Library based MS approaches for microbial identification require labeled sets of microbial mass spectra. Starting with version 0.82, MicrobeMS can work with experimental MALDI-TOF or LC-MS¹ mass spectra and their corresponding MS databases.
The RKI databases of microbial MALDI-TOF mass spectra contain mass spectra of highly pathogenic (biosafety level 3, BSL-3) bacteria such as Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Burkholderia pseudomallei, Brucella melitensis and Francisella tularensis as well as a selection of MALDI-TOF mass spectra of their close and distant relatives. The RKI mass spectral databases can be used as a reference for the diagnosis of BSL-3 bacteria using proprietary and free software packages for MALDI-TOF MS-based microbial identification. The databases are distributed as zip archives and contain the original mass spectra in their native data format (Bruker Daltonics). The MALDI-TOF MS databases are updated on a regular basis.
The LC-MS¹ database is an in silico database compiled from Uni-Prot Knowledgebase resources (Uni-Prot/KB Swissprot and TrEMBL), for details see below).

MALDI-TOF MS databases

The different versions of RKI biosafety level 3 (BSL-3) MALDI-TOF MS database can be downloaded from the following locations:

Screenshot of the ZENODO MALDI-ToF MS database data v.4.1
Screenshot of the ZENODO MALDI-ToF MS database data v.1.0
 1. ZENODO database version 4.1 (20230306):
    Lasch P, Stämmler M & Schneider A, (2023). Version 4.1 (20230306) of the 
    MALDI-TOF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. https://doi.org/10.5281/zenodo.7990990
    Version Mar 06, 2023, creative commons CC BY-NC-SA 4.0 license
 2. ZENODO database version 3 (20181130):
    Lasch P, Stämmler M & Schneider A, (2018). Version 3 (20181130) of the 
    MALDI-TOF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. https://doi.org/10.5281/zenodo.1880975
    Version Nov 30, 2018, creative commons CC BY-NC-SA 4.0 license
 3. ZENODO database version 2 (20170523):
    Lasch P, Stämmler M & Schneider , (2017). Version 2 (20170523) of the 
    MALDI-TOF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic Microorganisms from the Robert Koch-Institute (RKI). 
    Zenodo. http://doi.org/10.5281/zenodo.582602
    Version May 23, 2017, creative commons CC BY-NC-SA 4.0 license
 4. ZENODO database version 1 (20161027):
    Lasch P, Stämmler M & Schneider A, (2016). 
    A MALDI-TOF Mass Spectrometry Database for Identification and Classification of
    Highly Pathogenic from the Robert Koch-Institute (RKI). 
    Zenodo. http://doi.org/10.5281/zenodo.163517
    Version October 27, 2016, creative commons CC BY-NC-SA 4.0 license

LC-MS¹ databases

The original concept of microbial identification by means of MALDI-TOF MS of cultivated microbial cells and spectral distance-based comparison with entries of a microorganism spectra library has been adapted for LC-MS¹ microbial identification, for details see

   Preprint: Lasch P, Schneider A, Blumenscheit C and Doellinger J.
   Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹) and in silico Peptide Mass Data, 
   bioRxiv (Dec 10, 2018), doi:10.1101/870089.
   Peer reviewed paper: Lasch, P., A. Schneider, C. Blumenscheit, and J. Doellinger.
   Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS(1)) and in Silico Peptide Mass Libraries.
   Mol Cell Proteomics, 2020. 19(12): p. 2125-2139.
   Supplementary data - LC-MS¹ database and program code: Lasch P, Schneider A, Blumenscheit C, Doellinger J.
   In silico Database for Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS¹). 
   (ZENODO). https://doi.org/10.5281/zenodo.3573996
   Version December 13, 2019, creative commons CC BY-NC-SA 4.0 license 
   Tutorial: Identification analysis by means of LC-MS¹ and in silico databases